Nowadays, front-wheel and most rear-wheel drive vehicles have two side shafts that each consist of a fixed shaft with two CF joints at the ends. The side shafts permit vibration-free, constant drive of the individual wheels. The shorter the distance between the drive point (engine/gearbox) and the output point (wheel), the lower the energy loss.

The core task of the CV joints consists in low-friction transfer of the torque from the gearbox to the wheel, compensating for deflection in the chassis, and also for steering movements in front-wheel drive vehicles. The degrees of freedom needed for steering and deflection are provided by the bending angle and axial displacement of the joints. To this end, each side shaft needs a plunging and a fixed joint.
2. TYPIFICATION OF CV JOINTS AND THEIR STRUCTURE

2.1 Fixed joints
The name is derived from the function: The pivot of the shaft is not changeable, thus facilitating rotation. Fixed joints do not permit any axial movement. As a rule, they are used in front-wheel drive vehicles at the wheel end of the side shafts, permitting bending angles of up to 53° depending on the vehicle type.

Component parts:
1. Housing
2. Cage
3. Balls
4. Core
5. Axle boot

2.2 Plunging joints
They permit both angular movement and axial movement, and are available in the following different types:

2.2.1 Plunging joints
- Also referred to as "VL"-type joints because of the V-shaped design of the raceways on the inside of the joint.
- The ball raceways are straight.
- Bending angles of up to 22° are possible.
- The plunging distance is approx. 48 mm.
- Good torque transmission is ensured even at high speeds.
- In front-wheel drive vehicles, they are only fitted to the gearbox side. In rear-wheel drive vehicles, plunging ball joints can be used at both ends of the side shaft.

Component parts:
1. Outer raceway
2. Cage
3. Balls
4. Core
5. Axle boot

2.2.2 Plunging tripod joints
- Also referred to as "VL"-type joints because of the V-shaped design of the raceways on the inside of the joint.
- The ball raceways are straight.
- Bending angles of up to 22° are possible.
- The ball raceways are straight.
- The plunging distance is approx. 48 mm.
- Good torque transmission is ensured even at high speeds.
- In front-wheel drive vehicles, they are only fitted to the gearbox side. In rear-wheel drive vehicles, plunging ball joints can be used at both ends of the side shaft.

Component parts:
1. Triplet joint
 a) Bearing surface
 b) Needles
 c) Retainer
2. Bell
3. Straight raceway
4. Axle boot
3. SERVICE LIFE OF CV JOINTS DEPENDING ON AMBIENT CONDITIONS

The service life of CV joints primarily depends on the conditions in which the vehicle is being operated. Damage to a joint can have severe consequences, with loss of traction force in the most favourable case. In the worst case, a wheel can block or the side shaft itself works loose. It is no rarity for such situations to result in damages to surrounding parts such as gearbox, oil sump etc.

Problems in CV joints are revealed by vibrations and noises while driving. It is advisable to have the vehicle checked by an expert at a garage at the smallest sign of any discrepancy.

80% of the problems in CV joints are caused by a change in the working distance of the side shaft, 8% by faults or negligence during installation. 8% come from cracked axle boots which lead to a loss of lubricant, resulting in soiling of the joint. Only the remaining 4% of all joint failures have been caused by jolts and normal wear and tear of the parts.

In many cases where side shafts are damaged, the cause is not eliminated during the first visit to the garage. The actual problem is still present and reoccurs repeatedly to the customer’s dissatisfaction.

Correct alignment of the unit consisting of engine, gearbox and wheel suspension makes an important contribution to the durability and long service life of joints and side shafts. CV joints normally have a long service life. But this can only be safeguarded by regularly checking that the axle boots do not leak and that the clamps fit firmly.

If the engine and/or gearbox have to be removed as a result of an accident or repairs to the units, it is important to ensure that the unit assembly is correctly centred when subsequently fitting it back into the vehicle. The fastening points of the beams have corresponding tolerances to achieve correct alignment.

When work is being carried out to the steering trapeze, it is extremely important to achieve a 100% setting of the toe difference angle and the maximum steering angle. If the maximum steering angle is outside the bending angle of the joint, there is a risk of destroying the joint. In axles designed to use the end stops of the steering angle, these also have to be checked for signs of wear and tear or damage.
4. POSSIBLE CAUSES OF DAMAGE TO SIDE SHAFTS AND CV JOINTS

The working distance of the side shaft is stipulated by the design. Any corresponding changes caused by outer influences can result in severe damage. The necessary working distance is mainly changed by the following influences:

1. Engine and/or gearbox support
2. Centre alignment of engine and gearbox
3. Discrepancies in the wheel suspension (damage to the hubs, steering knuckles, joints, shock absorbers, etc.)

4.1 Damage to fixed joints

As a rule, it is the joint on the gearbox side that will be damaged first by overload on the side shaft.

Excessive vibrations and jolts are also transmitted to the outer joint, thus causing cracks to the inner component parts of the joint.

Most joint failures are caused by defective or torn axle boots. The outer joint is frequently affected in this case, as the larger bending angle places more of a load on the axle boot.
4.2 Damage to plunging joints

Discrepancies in the overall assembly consisting of the power units and the axle body also cause malfunctions in the plunging joints.

4.2.1 Damage to plunging ball joints

In plunging ball joints, an enlarged distance makes the core protrude too far so that the drive work is only performed at one end of the joint. Excessive tension is caused at the ends of the raceways with the inner component parts of the joint (cage, core and balls) exposed to greater wear and tear or suffering damage.

A reduced distance presses the core of the joint against the gearbox flange. Here again, excessive strain is placed on the joint itself and on the inner component parts of the transmission, causing damage in the worst case.

Symptoms for such damage are of extreme noises and finally a destroyed joint, with a loss of power transmission.

4.2.2 Damage to circular plunging tripod joints

In circular plunging tripod joints, which are usually fitted to the gearbox side, any change in length of the side shaft moves the tripod joint back and forth because of deflection and rebounding or steering in the inner raceways of the housing. Discrepancies in the whole assembly between power units and axle body can lengthen or shorten the working distance.

If the working distance is lengthened too far, this makes the tripod joint slide out of the holder, with a loss of drive force. In the worst case, surrounding component parts will be damaged. If the distance is shortened, the tripod joint impacts on the base of the housing, damaging the inner component parts of the gearbox.

4.2.3 Damage to DO plunging joints

Frequently, ignorance and/or negligence when removing and fitting these components will cause avoidable damage with premature wear and failure.

Damage to the cage can be caused by:
- natural wear and tear caused by the functioning of the component part (extremely rare)
- impacts or jolts, transmitted by uneven road surfaces
- jolts when removing and fitting the joint
- inadequate or excessive lubrication
- excessive tension caused by lengthening or shortening of the working distance

4.3 Damage to the axle boot

Problems with the axle boots, particularly at steered axles, are the most frequent cause of damage. In many cases, the reason are incorrectly fitted clamps. If the clamps are not fastened with the right torque or if even plastic tapes are used, the necessary contact pressure is missing and the axle boot slides off the joint.

Due to inadequate venting inside the joint during installation or damage to the material because of unsuitable grease a premature failure is very probable.

To achieve an appropriate service life, the axle boots have to be firmly and tightly sealed but still fitted with the necessary flexibility. This is the only way for them to perform properly.

Causes of damage:
- natural wear and tear of material or aging (porosity, cracks)
- excessive lubrication
- inadequate ventilation during installation (reducing the bending angle)
- unsuitable or incorrectly fastened clamps
5. LUBRICANT

Any cracks or leaky axle boots will result in a loss of lubricant while dirt penetrates the joint. Inadequate or excessive lubrication or even unsuitable lubricants cause premature wear and tear of the inner component parts.

5.1 Molybdenum sulphide as lubricant for CV joints

Grease is not suitable as a lubricant in certain cases. This applies particularly to CV joints. Contrary to common opinion, CV joints are lubricated with oil and not grease.

Oil is used in situations where high temperatures can be caused by the surroundings, high revs, high loads or constant friction of the inner component parts. All these factors come together in CV joints. For this reason, lubrication must be constant and take place in a suitable manner. The rotating components and raceways do not have a smooth surface, as it appears at first glance. A look through the microscope reveals a complete irregular surface.

To avoid direct contact between the two surfaces, those lubricants are used which form a thin lubricating film. Oil, with its special properties, is particularly suited in this case.

5.2 Why is molybdenum sulphide called grease?

The high loads occurring in CV joints demand resistant lubrication of the joint. A thin oil film cannot withstand these loads and would soon be displaced. Due to the structure of solid additives such as molybdenum sulphide they cannot be simply displaced and therefore represent, in combination with oil, the ideal lubricant. In this way, “lubricating rails” are formed between the surfaces, thus considerably improving the lubricating properties.

Molybdenum sulphide is a “polar” additive. In other words, its polarised molecules align themselves vertically to the metal surface, thus forming a more resistant lubricating film.
6. GENERAL REPAIR RECOMMENDATIONS

Comply with the following points during installation to avoid damage to the axle boots and CV joints and to ensure correct sealing:

1. Only fit new and suitable clamps.
2. Do not use any existing clamps.
3. Do not use any plastic tapes or twisted wires.
4. Always use the lubricant included with our products.
5. Damage caused by accidents or unusual jolts resulting from the road surface are not included in normal age-related wear and tear. It repairing side shafts damaged by these causes, all surrounding parts must be examined precisely to obtain a complete, reliable diagnosis in order to avoid subsequent repairs.

The following points must be checked:

1. Condition and fastening of all drive unit bearings (including all fastening bolts)
2. Steering knuckle with add-on parts (joints, tie rods, etc.)
3. Chassis, drive unit supports, axles (including all fastening bolts)
4. Wheel bearings and wheel hubs
5. Upper and lower shock absorber suspension
6. Axle alignment to check the axle geometry

Please comply with the manufacturer’s repair instructions for the specific vehicle.

7. TROUBLESHOOTING

<table>
<thead>
<tr>
<th>DIAGNOSIS</th>
<th>NOISES AT HIGHER SPEED</th>
<th>JOLTING</th>
<th>VIBRATIONS AND LATERAL MOVEMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symptoms</td>
<td>Constant noises from the wheels at 80 km/h</td>
<td>Cyclic jolts at all times while driving</td>
<td>Vibrations when starting up and braking</td>
</tr>
<tr>
<td>Possible causes</td>
<td>Unsuitable or soiled lubricant or inadequate lubrication</td>
<td>Interior damage to the outer joint</td>
<td>Interior damage to the inner joint</td>
</tr>
<tr>
<td></td>
<td>Interior damage to the joint</td>
<td>Interior damage to the inner joint</td>
<td>Damage to or imbalance in the rod or shaft of the split axle</td>
</tr>
<tr>
<td></td>
<td>Leaky axle boot</td>
<td>Leaky axle boot</td>
<td>Deformed/damaged tyres or imbalance in the wheel</td>
</tr>
<tr>
<td></td>
<td>Damage to the wheel bearing</td>
<td>Incorrect torque for the axle nut</td>
<td>Alignment of the wheels outside the tolerance</td>
</tr>
<tr>
<td></td>
<td>Tyres in poor condition</td>
<td>Damage to engine supports, wheel suspension and/or chassis</td>
<td>Engine support in poor condition or broken</td>
</tr>
<tr>
<td></td>
<td>Loose or damaged compensation weights or rubbers on the side shaft</td>
<td>Check the engine support and chassis</td>
<td>Damage to the car body and/or chassis</td>
</tr>
</tbody>
</table>

Checks before dismantling

- Check that the clamps fit properly and are fastened correctly
- Check the axle boot for porosity and cracks
- Reproduce the noise by turning the wheels with the vehicle jacked up
- Mount the clamps and fasten them in place.

Checks and work after dismantling

- Check for damage or dirt inside the joints
- Check for noises in the wheel bearings
- Clean and check the tapered roller bearings and replace at the first signs of wear and tear
- Check whether the side shaft is bent or damaged, replace the complete shaft if necessary